Cellular adaptation to xenobiotics: Interplay between xenosensors, reactive oxygen species and FOXO transcription factors
نویسندگان
چکیده
Cells adapt to an exposure to xenobiotics by upregulating the biosynthesis of proteins involved in xenobiotic metabolism. This is achieved largely via activation of cellular xenosensors that modulate gene expression. Biotransformation of xenobiotics frequently comes with the generation of reactive oxygen species (ROS). ROS, in turn, are known modulators of signal transduction processes. FOXO (forkhead box, class O) transcription factors are among the proteins deeply involved in the cellular response to stress, including oxidative stress elicited by the formation of ROS. On the one hand, FOXO activity is modulated by ROS, while on the other, FOXO target genes include many that encode antioxidant proteins - thereby establishing a regulatory circuit. Here, the role of ROS and of FOXOs in the regulation of xenosensor transcriptional activities will be discussed. Constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptors (PPARs), arylhydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) all interact with FOXOs and/or ROS. The two latter not only fine-tune the activities of xenosensors but also mediate interactions between them. As a consequence, the emerging picture of an interplay between xenosensors, ROS and FOXO transcription factors suggests a modulatory role of ROS and FOXOs in the cellular adaptive response to xenobiotics.
منابع مشابه
Redox regulation of FoxO transcription factors
Transcription factors of the forkhead box, class O (FoxO) family are important regulators of the cellular stress response and promote the cellular antioxidant defense. On one hand, FoxOs stimulate the transcription of genes coding for antioxidant proteins located in different subcellular compartments, such as in mitochondria (i.e. superoxide dismutase-2, peroxiredoxins 3 and 5) and peroxisomes ...
متن کاملRole of Forkhead Transcription Factors in Diabetes-Induced Oxidative Stress
Diabetes is a chronic metabolic disorder, characterized by hyperglycemia resulting from insulin deficiency and/or insulin resistance. Recent evidence suggests that high levels of reactive oxygen species (ROS) and subsequent oxidative stress are key contributors in the development of diabetic complications. The FOXO family of forkhead transcription factors including FOXO1, FOXO3, FOXO4, and FOXO...
متن کاملRegulation of erythrocyte lifespan: do reactive oxygen species set the clock?
The forkhead box O (Foxo) subfamily of transcription factors regulates expression of genes important for many cellular processes, ranging from initiation of cell cycle arrest and apoptosis to induction of DNA damage repair. Invertebrate Foxo orthologs such as DAF-16 also regulate longevity. Cellular responses inducing resistance to ROS are important for cellular survival and organism lifespan, ...
متن کاملMitochondria and FOXO3: breath or die
Forkhead box O (FOXO) transcription factors are regulators of cell-type specific apoptosis and cell cycle arrest but also control longevity and reactive oxygen species (ROS). ROS-control by FOXO is mediated by transcriptional activation of detoxifying enzymes such as Superoxide dismutase 2 (SOD2), Catalase or Sestrins or by the repression of mitochondrial respiratory chain proteins resulting in...
متن کاملPI3K/Akt/FoxO: a novel participant in signal transduction in bone cells under mechanical stimulation.
FoxO (forkhead box O) transcription factors, one of the main downstream mediators of PI3K (phosphatidylinositol-3 kinase)/Akt [also known as PKB (protein kinase B)] signal transduction pathway, play an important role in modulating cellular homoeostasis. Recent studies have revealed the significance of FoxO in bone, the interaction of FoxO with β-catenin, along with mechanical stress-induced ina...
متن کامل